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Sample of n
observed pairs

Y is the r.v. we are interested in studying and preticting.
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Simple Linear Regression
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Let’s think, by now, about the Y‘s observations only.

It is of the most importance to estimate the expected value of Y, μ,
as well as its variance, σ2, a measure of the variability around μ.
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Simple Linear Regression
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As already known, the best estimate of μ is the sample mean Y
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Simple Linear Regression
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The usual way of estimating Y’s variability is, then, based on:
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Simple Linear Regression
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Let’s look again at the scatter plot.
It looks like that exists a more or less linear relationship between Y and X.
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Simple Linear Regression



We can infer that exists a structural relationship between Y and X of the form

++= XY 10

where:

Y is the dependent (on X), or response, random variable;

X is the independent (of Y and ), or explanatory, controlled variable;

 is the random error variable;

0 is a parameter, the intercept of the linear relationship component;

1 is a parameter, the slope of the linear relationship component.

)Y,(X,),Y,(X nn11  are pairs of observations of the model – a sample of n pairs,

thus, all the pairs verify the equation: n,1,i,XY ii10i =++=
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Simple Linear Regression Model



Since the r.v.’s 1, 2,…, n, represent errors, it is natural that their expected values
are all equal to zero and, thus, we assume that

(1) .

It is also natural the errors have all the same variance and, thus, we assume that

(2) .

Finally, the errors must be statistically not related among each other (otherwise
the linear component would “suffer” from lack of fitness in predicting the
dependent variable), what leads to the assumption that

(3) .
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Simple Linear Regression Model – Assumptions



In face of the previous assumptions, the model is such that, when X is known:

=+=++=++= X)E(X)XE(E(Y) 1010

CONSTANT

10 

==++= )Var()XVar(Var(Y)

CONSTANT

10 

The expected value of Y is a linear function of X ( is totally described by X).

2)Var(Var(Y) ==

The straight line fitting the points in the scatter
plot corresponds to the expected value of Y

The variance of Y is exactly the same as the variance of the error.
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Simple Linear Regression Model – Moments
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Use our sample of data pairs to obtain the best estimates of 0 and 1 and 2.

If the linear model hold, we know that the expected value of Y, , varies
according to the corresponding value of X, and if we knew the true slope, 1, and
intercept, 0, of the straight line relating Y and X we could immediately find .
Also, we need to know 2 in order to make good predictions for Y.

But… the real 0, 1 and 2 are unknown!...

What can be done?

How?
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Simple Linear Regression Model – Estimation



Suppose that b0 and b1 are estimates of 0 and 1, respectively.

Using b0 and b1 we can estimate/predict the expected value of each Yi, also called
predicted value of Yi, based on the correspondent Xi (using the straight line
fitted to the set of pairs):

n,1,i,XbbŶ i10i =+=

Based on each predicted value Yi we can, then, predict the correspondent error
computing the so called residuals:

n,1,i,)Xb(bYŶYˆe i10iiiii =+−=−==

Recalling that E()=0 (and then Var()=E(2)) we can use the set of n residuals to
estimate 2, the common variance of  and Y, based (as usual) on the Residual
Sum of Squares (also called Sum of Squares due to Error):
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Simple Linear Regression Model – Estimation



The smaller the variance of Y, the more accurate the prediction of Y based only
on its expected value. As we already know that the best way of estimating 2 is
based on SSE, we will say that:

The best estimates of 0 and 1 are those b0 and b1, respectively, that minimize
the residual sum of squares, SSE – the Least Squares (LS) estimates.
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Simple Linear Regression Model – Least Squares Estimation



Expressions for b0 and b1
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Three important properties

The mean of the predicted values is equal to the mean
of the observed values.

YŶ
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The mean of the residuals is equal to zero.

)Y,X( The pair of sample means belongs to the LS straight line.
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Analyzing the Model – Measures of Variation

Usually, a r.v. variability around its unknown expected value is expressed in terms
of the sample variance. In what concerns de dependent variable Y, we have:
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is expressed in terms of what is called the Total Sum of Squares – STT:
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It turns out that SST can be factorized as:
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Analyzing the Model – Measures of Variation

Thus, the total variability of the Y observations around its mean is the sum of two
factors, one corresponding to the SSE and another which expression is


=

−=
n

1i

2
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Since the mean of the predicted values is equal to the mean of the observed
values, SSR measures the variability of the predicted values around its mean. On
the other hand, the predicted values are points on the regression line and, thus,
SSR is also referred to as the Sum of Squares due to Regression. Also, if all the
predicted values were exactly equal to the correspondent observed values, then
SSR would measure the variability of the Y observations around its mean. For
this reason it is said that SSR measures the part of the total variability of the Y

observations that is due to the regression.
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Analyzing the Model – Measures of Variation

In conclusion, the Total Sum of Squares (of deviations of observed values from its
mean) is decomposed into one factor measuring the sum of squares due to the
regression (squares of deviations of predicted values from its mean) and another
factor measuring the residuals sum of squares (of deviations between observed
and predicted values). This is called the partition of the total sum of squares.
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The closer SSR is to SST, or equivalently the smaller SSE is, the best is the
regression line in explaining the dispersion of the observed pairs distributed
around it.
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Testing the Significance of the Model – ANOVA table

The partition of the total sum of squares is very useful, starting with the fact that
it allows us to test the significance of the model. To do this, it is usual to construct
an Analysis of Variance (ANOVA) table as follows:

ANOVA

Source df SS MS F

Regression 1

Residual
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Note: df stands for “degrees of freedom”.
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ANOVA

Source df SS MS F

Regression 1

Residual

Total

1
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Testing the Significance of the Model – ANOVA table

Sometimes is useful to construct the ANOVA table in terms of SXX, SYY and b1:
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Testing the Significance of the Model – ANOVA table

Testing the significance of the model is equivalent to test if the slope, 1, is
significantly different from zero, that is, testing the hypothesis:

++= XY 10

0:H0:H 1110 = vs

The previous hypothesis are tested comparing the value of the F statistic with

the critical value of the F distribution with 1 df in the numerator and n–2 df in the
denominator, F0.05;1,n-2. Large values of F signify that MSR is larger than MSE and,
thus, the model shall be significant.

Decision: Reject H0: model is SIGNIFICANT

Do not reject H0: model is NOT SIGNIFICANT

2n0.05;1,FF −

2n0.05;1,FF − 


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Significant model – How “good” is the model?

Even if a linear model is significant, its “quality” may be poor, in the sense that
SSR may “fail” to explain the biggest part of SST (or, equivalently, SSE may be
too large in comparison with SSR.









==

−

−

==





=

=

2

Y

2

X2

1

YY

XX2

1n

1i

2

i

n

1i

2

i
2

S

S
b

S

S
b

)Y(Y

)YŶ(
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R2 indicates the proportion of the variance in the dependent (response) variable
that is predicted by the independent (explanatory) variable.

One measure of the quality of the model is the coefficient of determination, R2:

1R0 2 
The model is as “strong” (good) as closer to 1 is R2.

The model is as “weak” (bad) as closer to 0 is R2 .

20



Coefficient of determination   vs  Sample Correlation Coefficient

Recall that the correlation coefficient measures the “strength” (along with the
direction) of the linear relation between two r.v.’s X and Y:

Y)Var(X)var(

Y)Cov(X,
XY =

The sample correlation coefficient for data sets (X1, …,Xn) and (Y1, …,Yn), is
obtained by substituting the sample covariance and variances into the formula
above, to get:
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Coefficient of determination   vs  Sample Correlation Coefficient

The interpretation of rXY is absolutely analogous to that for XY:

• The closer to 1 (resp. –1) rXY is, the stronger the linear relation between
the two data sets, and in the same (resp. opposite) direction.

• The closer to 0 rXY is, the weaker the linear relation between the two
data sets.

Therefore, about the linear relation between the two data sets:

• rXY directly gives the strength and direction of the relation, but not the
proportion of the dependent variable variability explained by the
independent variable.

• R2 directly gives the proportion of the dependent variable variability
explained by the independent variable, but not the strength and
direction of the relation.
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Coefficient of determination   vs  Sample Correlation Coefficient

Nevertheless, since and , we have , and2
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because rxy has the same sign as b1:

• Knowing the sign of b1 and R2 we can find rxy:

• Knowing rxy we can find R2:

2

1XY R)sign(br =

2

XY

2 )r(R =

y = 0.8559x + 1.3514
R² = 0.81  ;  r = 0.90

y

x

y = -0.8559x + 12.479
R² = 0.81  ;  r = -0.90

y

x



Coefficient of determination   vs  F Statistic

One more result (a very important one!) relates the coefficient of determination
to the F statistic.

Doing some simple calculations, it can be shown that:
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Therefore, the knowledge about the coefficient of determination (or de sample
correlation coefficient) allows to immediately compute the value of the F statistic
and make a decision about the statistical significance of the linear regression
model.
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Significant model – Least Squares Estimates
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Least squares regression line

Expected value of the response variable, Y, given the controlled variable, X:

Variance of the response variable, Y, given the controlled variable, X:

Standard deviation of the response variable, Y, given the controlled variable, X:

Standard error

Mean squared error
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Obs. X Y
1 2 3.16
2 3 3.18
3 4 5.47
4 5 6.11
5 6 4.42
6 7 6.68
7 8 9.34
8 9 9.03
9 10 10.89

10 11 10.61
Sum 65 68.89

Sum of squares 505 551.4505
Sum of products 523.17

Least Squares Regression – Example
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Obs. X Y
1 2 3.16
2 3 3.18
3 4 5.47
4 5 6.11
5 6 4.42
6 7 6.68
7 8 9.34
8 9 9.03
9 10 10.89

10 11 10.61
Sum 65 68.89

Sum of squares 505 551.4505
Sum of products 523.17

Least Squares Regression – Example

y = 0.9138x + 0.9496
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